Kedudukan titik dan garis terhadap lingkaran di sini maksudnya posisi (letak) titik dan garis pada lingkaran yaitu untuk titik posisinya diluar lingkaran, pada lingkaran, atau di dalam lingkaran , sedangkan untuk garis posisinya berbotongan dengan lingkaran, bersinggungan, atau tidak berpotongan.
Contoh :
Tentukan posisi titik-titik berikut terhadap lingkaran $x^2 + y^2 = 25$
1). A(3,1)
2). B(-3,4)
3). C(5,-6)
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 $ , kita akan bandingkan hasilnya dengan 25.
*). Menentukan nilai $ K $ setiap titik :
$ \begin{align} A(3,1) \rightarrow K & = x^2 + y^2 \\ K & = 3^2 + 1^2 \\ K & = 9 + 1 = 10 \end{align} $
Nilai $ K = 10 < 25 , \, $ artinya titik A(3,1) terletak di dalam lingkaran $x^2 + y^2 = 25$
$ \begin{align} B(-3,4) \rightarrow K & = x^2 + y^2 \\ K & = (-3)^2 + 4^2 \\ K & = 9 + 16 = 25 \end{align} $
Nilai $ K = 25 , \, $ artinya titik B(-3,4) terletak pada lingkaran $x^2 + y^2 = 25$
$ \begin{align} C(5,-6) \rightarrow K & = x^2 + y^2 \\ K & = 5^2 + (-6)^2 \\ K & = 25 + 36 = 61 \end{align} $
Nilai $ K = 61 > 25 , \, $ artinya titik C(5,-6) terletak di luar lingkaran $x^2 + y^2 = 25$
Contoh :
Tentukan kedudukan titik A(1,3) terhadap lingkaran $ (x-2)^2 + (y+1)^2 = 16 $ !
Penyelesaian :
*). Kita misalkan : $ K = (x-2)^2 + (y+1)^2 $ , kita akan bandingkan hasilnya dengan 16.
*). Menentukan nilai $ K $ ,
$ \begin{align} A(1,3) \rightarrow K & = (x-2)^2 + (y+1)^2 \\ K & = (1-2)^2 + (3+1)^2 \\ K & = 1 + 16 = 17 \end{align} $
Nilai $ K = 17 > 16 , \, $ artinya titik A(1,3) terletak di luar lingkaran $ (x-2)^2 + (y+1)^2 = 16 $
1). Tentukan kedudukan titik A(-1,2) terhadap lingkaran $ x^2 + y^2 -2x + 3y - 13 = 0 $ !
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 -2x + 3y - 13 $ , kita akan bandingkan hasilnya dengan 0.
*). Menentukan nilai $ K $ ,
$ \begin{align} A(-1,2) \rightarrow K & = x^2 + y^2 -2x + 3y - 13 \\ K & = (-1)^2 + 2^2 -2(-1) + 3.2 - 13 \\ K & = 1 + 4 + 2 + 6 - 13 = 0 \end{align} $
Nilai $ K = 0 , \, $ artinya titik A(-1,2) terletak pada lingkaran $ x^2 + y^2 -2x + 3y - 13 = 0 $
2). Agar titik B(-2,1) terletak pada lingkaran $ x^2 + y^2 - 3x + py - 3 = 0 , \, $ tentukan nilai $ p $ !
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 - 3x + py - 3 $ , kita akan bandingkan hasilnya dengan 0.
*). Menentukan nilai $ K $ ,
$ \begin{align} B(-2,1) \rightarrow K & = x^2 + y^2 - 3x + py - 3 \\ K & = (-2)^2 + 1^2 - 3(-2) + p.1 - 3 \\ K & = 4 + 1 + 6 + p - 3 \\ K & = 8 + p \end{align} $
*). Agar titik B terletak pada lingkaran, syaratnya : Nilai $ K = 0 $
$ \begin{align} K = 0 \rightarrow 8 + p = 0 \rightarrow p = -8 \end{align} $
Jadi, nilai $ p = -8 $ .
Contoh :
1). Tentukan posisi garis $ x - y + 1 = 0 $ terhadap lingkaran $ x^2 + y^2 = 25$. Jika berpotongan, tentukan titik potongnya. !
Penyelesaian :
*). Substitusi persamaan garis ke persamaan lingkaran
$ x - y + 1 = 0 \rightarrow y = x + 1 $
Persamaan lingkarannya : $ x^2 + y^2 = 25 $
$ \begin{align} x^2 + y^2 & = 25 \\ x^2 + (x+1)^2 & = 25 \\ x^2 + (x^2 + 2x + 1) & = 25 \\ 2x^2 + 2x + - 24 & = 0 \, \, \, \, \, \text{(bagi 2)} \\ x^2 + x + - 12 & = 0 \\ a = 1, \, b = 1, \, c & = -12 \\ D & = b^2 - 4ac \\ & = 1^2 - 4.1.(-12) \\ & = 1 + 48 \\ & = 49 \end{align} $
Diperoleh $ D = 49 > 0 \, $ , artinya kedudukan garis $ y = x + 1 \, $ memotong lingkaran $ x^2 + y^2 = 25 $ di dua titik yang berbeda.
*). Menentukan titik potong garis dan lingkaran.
$ \begin{align} x^2 + x + - 12 & = 0 \\ (x - 3)(x + 4 ) & = 0 \\ x = 3 \vee x & = -4 \\ x = 3 \rightarrow y & = x + 1 \\ y & = 3 + 1 = 4 \\ x = -4 \rightarrow y & = x + 1 \\ y & = -4 + 1 = -3 \end{align} $
Sehingga titik potong garis terhadap lingkaran adalah (3,4) dan (-4,-3).
2). Diketahui garis lurus $ g $ dengan persamaan $ y = mx + 2 $ dan lingkaran L dengan persamaan $x^2 + y^2 = 4$. Agar garis $ g $ memotong lingkaran L di dua titik yang berbeda, tentukan nilai $m $ yang memenuhi.!
Penyelesaian :
*). Substitusi garis ke persamaan lingkaran.
$ \begin{align} y = mx + 2 \rightarrow x^2 + y^2 & = 4 \\ x^2 + (mx+2)^2 & = 4 \\ x^2 + (m^2x^2 + 4mx + 4) & = 4 \\ (m^2+1)x^2 + 4mx & = 0 \\ a = m^2 + 1, \, b = 4m, \, c & = 0 \\ D & = b^2 - 4ac \\ & = (4m)^2 - 4.(m^2+1).0 \\ & = 16m^2 - 0 \\ & = 16m^2 \end{align} $
*). Syarat garis memotong lingkaran di dua titik : $ D > 0 $
$ \begin{align} D & > 0 \\ 16m^2 & > 0 \\ m^2 & > 0 \end{align} $
Karena nilai $ m^2 \, $ selalu positif, maka $ m^2 > 0 \, $ terpenuhi untuk semua nilai $ m \, $ kecuali $ m = 0 . \, $
Jadi, solusinya : $ \{ m \in R , \, m \neq 0 \} \, $ atau bisa ditulis $ \{ m < 0 \vee m > 0 \} $ .
Kedudukan titik A($x_1,y_1$) pada lingkaran : $ x^2 + y^2 = r^2 $
Kita misalkan ruas kiri persamaan lingkarannya sebagai $ K = x^2 + y^2 $
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = x_1^2 + y_1^2 $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ r^2 $, yaitu :
*). Jika $ K < r^2 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = r^2 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > r^2 , \, $ maka titik A terletak di luar lingkaran.
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = x_1^2 + y_1^2 $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ r^2 $, yaitu :
*). Jika $ K < r^2 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = r^2 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > r^2 , \, $ maka titik A terletak di luar lingkaran.
Tentukan posisi titik-titik berikut terhadap lingkaran $x^2 + y^2 = 25$
1). A(3,1)
2). B(-3,4)
3). C(5,-6)
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 $ , kita akan bandingkan hasilnya dengan 25.
*). Menentukan nilai $ K $ setiap titik :
$ \begin{align} A(3,1) \rightarrow K & = x^2 + y^2 \\ K & = 3^2 + 1^2 \\ K & = 9 + 1 = 10 \end{align} $
Nilai $ K = 10 < 25 , \, $ artinya titik A(3,1) terletak di dalam lingkaran $x^2 + y^2 = 25$
$ \begin{align} B(-3,4) \rightarrow K & = x^2 + y^2 \\ K & = (-3)^2 + 4^2 \\ K & = 9 + 16 = 25 \end{align} $
Nilai $ K = 25 , \, $ artinya titik B(-3,4) terletak pada lingkaran $x^2 + y^2 = 25$
$ \begin{align} C(5,-6) \rightarrow K & = x^2 + y^2 \\ K & = 5^2 + (-6)^2 \\ K & = 25 + 36 = 61 \end{align} $
Nilai $ K = 61 > 25 , \, $ artinya titik C(5,-6) terletak di luar lingkaran $x^2 + y^2 = 25$
Kedudukan titik A($x_1,y_1$) pada lingkaran : $ (x-a)^2 + (y-b)^2 = r^2 $
Kita misalkan ruas kiri persamaan lingkarannya sebagai $ K = (x-a)^2 + (y-b)^2 $
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = (x_1-a)^2 + (y_1-b)^2 $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ r^2 $, yaitu :
*). Jika $ K < r^2 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = r^2 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > r^2 , \, $ maka titik A terletak di luar lingkaran.
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = (x_1-a)^2 + (y_1-b)^2 $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ r^2 $, yaitu :
*). Jika $ K < r^2 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = r^2 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > r^2 , \, $ maka titik A terletak di luar lingkaran.
Tentukan kedudukan titik A(1,3) terhadap lingkaran $ (x-2)^2 + (y+1)^2 = 16 $ !
Penyelesaian :
*). Kita misalkan : $ K = (x-2)^2 + (y+1)^2 $ , kita akan bandingkan hasilnya dengan 16.
*). Menentukan nilai $ K $ ,
$ \begin{align} A(1,3) \rightarrow K & = (x-2)^2 + (y+1)^2 \\ K & = (1-2)^2 + (3+1)^2 \\ K & = 1 + 16 = 17 \end{align} $
Nilai $ K = 17 > 16 , \, $ artinya titik A(1,3) terletak di luar lingkaran $ (x-2)^2 + (y+1)^2 = 16 $
Kedudukan titik A($x_1,y_1$) pada lingkaran : $ x^2 + y^2 + Ax + By + C = 0 $
Kita misalkan ruas kiri persamaan lingkarannya sebagai $ K = x^2 + y^2 + Ax + By + C $
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = x_1^2 + y_1^2 + Ax_1 + By_1 + C $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ 0 $, yaitu :
*). Jika $ K < 0 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = 0 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > 0 , \, $ maka titik A terletak di luar lingkaran.
Nilai $ K \, $ bisa kita peroleh dengan mensubstitusi titik A($x_1,y_1$), yaitu $ K = x_1^2 + y_1^2 + Ax_1 + By_1 + C $ . Dari nilai $ K $ inilah kita bisa tentukan kedudukan titik A terhadap lingkaran dengan membandingkannya terhadap nilai $ 0 $, yaitu :
*). Jika $ K < 0 , \, $ maka titik A terletak di dalam lingkaran.
*). Jika $ K = 0 , \, $ maka titik A terletak pada lingkaran.
*). Jika $ K > 0 , \, $ maka titik A terletak di luar lingkaran.
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 -2x + 3y - 13 $ , kita akan bandingkan hasilnya dengan 0.
*). Menentukan nilai $ K $ ,
$ \begin{align} A(-1,2) \rightarrow K & = x^2 + y^2 -2x + 3y - 13 \\ K & = (-1)^2 + 2^2 -2(-1) + 3.2 - 13 \\ K & = 1 + 4 + 2 + 6 - 13 = 0 \end{align} $
Nilai $ K = 0 , \, $ artinya titik A(-1,2) terletak pada lingkaran $ x^2 + y^2 -2x + 3y - 13 = 0 $
2). Agar titik B(-2,1) terletak pada lingkaran $ x^2 + y^2 - 3x + py - 3 = 0 , \, $ tentukan nilai $ p $ !
Penyelesaian :
*). Kita misalkan : $ K = x^2 + y^2 - 3x + py - 3 $ , kita akan bandingkan hasilnya dengan 0.
*). Menentukan nilai $ K $ ,
$ \begin{align} B(-2,1) \rightarrow K & = x^2 + y^2 - 3x + py - 3 \\ K & = (-2)^2 + 1^2 - 3(-2) + p.1 - 3 \\ K & = 4 + 1 + 6 + p - 3 \\ K & = 8 + p \end{align} $
*). Agar titik B terletak pada lingkaran, syaratnya : Nilai $ K = 0 $
$ \begin{align} K = 0 \rightarrow 8 + p = 0 \rightarrow p = -8 \end{align} $
Jadi, nilai $ p = -8 $ .
Kedudukan garis terhadap suatu lingkaran
Untuk menentukan kedudukan garis terhadap suatu lingkaran, kita substitusikan garis ke persamaan lingkaran kemudian kita tentukan nilai Diskriminannya ($ D = b^2 - 4ac $). Ada tiga kemungkinan nilai D, yaitu :
i). Jika $ D < 0 $ , maka persamaan garis terletak di luar lingkaran , dan tidak memotong lingkaran atau jarak pusat lingkaran ke garis lebih dari jari-jari lingkaran ($k > r$).
ii). Jika $ D = 0 $, maka persamaan garis terletak pada lingkaran dan memotong lingkaran di satu titik atau jarak pusat lingkaran ke garis sama dengan jari-jari lingkaran ($k = r$), atau bisa disebut juga garis bersinggungan dengan lingkaran.
iii). Jika $D > 0 $, maka persamaan garis terletak di dalam lingkaran , dan memotong lingkaran di dua titik atau jarak pusat lingkaran ke garis lebih kecil dari jari-jari lingkaran ($k < r$).
dimana $ k \, $ menyatakan jarak pusat lingkaran ke garis. Silahkan baca materi "jarak titik ke garis".
i). Jika $ D < 0 $ , maka persamaan garis terletak di luar lingkaran , dan tidak memotong lingkaran atau jarak pusat lingkaran ke garis lebih dari jari-jari lingkaran ($k > r$).
ii). Jika $ D = 0 $, maka persamaan garis terletak pada lingkaran dan memotong lingkaran di satu titik atau jarak pusat lingkaran ke garis sama dengan jari-jari lingkaran ($k = r$), atau bisa disebut juga garis bersinggungan dengan lingkaran.
iii). Jika $D > 0 $, maka persamaan garis terletak di dalam lingkaran , dan memotong lingkaran di dua titik atau jarak pusat lingkaran ke garis lebih kecil dari jari-jari lingkaran ($k < r$).
dimana $ k \, $ menyatakan jarak pusat lingkaran ke garis. Silahkan baca materi "jarak titik ke garis".
1). Tentukan posisi garis $ x - y + 1 = 0 $ terhadap lingkaran $ x^2 + y^2 = 25$. Jika berpotongan, tentukan titik potongnya. !
Penyelesaian :
*). Substitusi persamaan garis ke persamaan lingkaran
$ x - y + 1 = 0 \rightarrow y = x + 1 $
Persamaan lingkarannya : $ x^2 + y^2 = 25 $
$ \begin{align} x^2 + y^2 & = 25 \\ x^2 + (x+1)^2 & = 25 \\ x^2 + (x^2 + 2x + 1) & = 25 \\ 2x^2 + 2x + - 24 & = 0 \, \, \, \, \, \text{(bagi 2)} \\ x^2 + x + - 12 & = 0 \\ a = 1, \, b = 1, \, c & = -12 \\ D & = b^2 - 4ac \\ & = 1^2 - 4.1.(-12) \\ & = 1 + 48 \\ & = 49 \end{align} $
Diperoleh $ D = 49 > 0 \, $ , artinya kedudukan garis $ y = x + 1 \, $ memotong lingkaran $ x^2 + y^2 = 25 $ di dua titik yang berbeda.
*). Menentukan titik potong garis dan lingkaran.
$ \begin{align} x^2 + x + - 12 & = 0 \\ (x - 3)(x + 4 ) & = 0 \\ x = 3 \vee x & = -4 \\ x = 3 \rightarrow y & = x + 1 \\ y & = 3 + 1 = 4 \\ x = -4 \rightarrow y & = x + 1 \\ y & = -4 + 1 = -3 \end{align} $
Sehingga titik potong garis terhadap lingkaran adalah (3,4) dan (-4,-3).
2). Diketahui garis lurus $ g $ dengan persamaan $ y = mx + 2 $ dan lingkaran L dengan persamaan $x^2 + y^2 = 4$. Agar garis $ g $ memotong lingkaran L di dua titik yang berbeda, tentukan nilai $m $ yang memenuhi.!
Penyelesaian :
*). Substitusi garis ke persamaan lingkaran.
$ \begin{align} y = mx + 2 \rightarrow x^2 + y^2 & = 4 \\ x^2 + (mx+2)^2 & = 4 \\ x^2 + (m^2x^2 + 4mx + 4) & = 4 \\ (m^2+1)x^2 + 4mx & = 0 \\ a = m^2 + 1, \, b = 4m, \, c & = 0 \\ D & = b^2 - 4ac \\ & = (4m)^2 - 4.(m^2+1).0 \\ & = 16m^2 - 0 \\ & = 16m^2 \end{align} $
*). Syarat garis memotong lingkaran di dua titik : $ D > 0 $
$ \begin{align} D & > 0 \\ 16m^2 & > 0 \\ m^2 & > 0 \end{align} $
Karena nilai $ m^2 \, $ selalu positif, maka $ m^2 > 0 \, $ terpenuhi untuk semua nilai $ m \, $ kecuali $ m = 0 . \, $
Jadi, solusinya : $ \{ m \in R , \, m \neq 0 \} \, $ atau bisa ditulis $ \{ m < 0 \vee m > 0 \} $ .
EmoticonEmoticon